Don't have an account? Join for free
For advertising on
Interest to become a seller? Get info
Cart
Injection Valve Subsurface Safety 4.48 inch
The WI retrievable injection valve is a high-performance, high-flow rate injection valve. High throughput is achieved by a unique valve configuration that minimizes turbulent and potentially erosive flow. Operation is not dependent on a specific flow rate, pressure, or setting depth, thus negating the need for adjustment over time. The valve incorporates a metal-to-metal valve and seat energized by the combination of an integral spring and well pressure acting from below. The WI injection valve can be deployed on a wireline lock or through-tubing pack-off device, providing flexibility not available with alternative injection valve systems. As a result of the simple design with fewer parts, redress and repair costs are considerably lower than those for other injection valve systems. Applications The WI injection valve is primarily used in water injection applications as an alternative to conventional tubing or wireline-set safety valves. The valve is also commonly used as a retrofit solution in water injectors in which a tubing to annulus leak has occurred. The valve can be deployed below the leak point to eliminate uncontrolled annulus pressure increases when the injection stops. Features » Compatible with all known lock systems » Dedicated designs to suit Halliburton EB0 intervention packers » Enhanced internal flow profile » Simple design and construction » Flow-loop testing performed to establish pressure drop versus pump rate *information referenced from supplier catalog. View Details
5" HP-6 Hydraulic Set High Angle Production Packer for 11.5-15 PPF Casing
Ballycatter HP-6 High Angle Production Packer
Available sizes: 4 1/2”, 5”, 5 1/2”, 6 5/8”, 7”, 7 5/8”, and 9 5/8”
The Ballycatter HP-6 is a compact, hydraulically set production packer designed for low to medium-pressure applications in high-angle and horizontal wells. With a short body length and no tubing movement required for setting, the HP-6 is ideally suited for tight-radius deviations, stacked completions, and coiled tubing operations. It can be run in single or multiple packer installations with sequential setting in a single trip, reducing rig time and complexity.
Rated to 7,500 psi and tested in Q125 casing, the HP-6 features a straight-pull release mechanism that is fully isolated from hydraulic pressure, allowing low shear-out force even under full differential pressure. Built-in bypass ports equalize pressure during retrieval, ensuring smooth release and reducing swab risk. The tool can be set using rig pumps, and its economical design allows for easy redress and reuse. Optional rotational release is available for added flexibility in challenging retrieval scenarios.
Engineered with materials and elastomers for hostile environments, the HP-6 delivers dependable performance in offshore operations, high-angle wells, and cost-sensitive completions requiring reliability without unnecessary complexity.
View Details
The Tube Fittings Male Elbow ISO Tapered Thread is a 90° angled fitting designed to connect tubing in systems where a change of direction is required. It features ISO standard tapered threads that create a tight, leak-resistant seal without the need for additional gaskets. Manufactured from high-quality materials, the fitting ensures durability and consistent performance under vibration, pressure fluctuations, and harsh industrial conditions.
Its compact elbow design allows for space-efficient installations, making it suitable for piping layouts with limited room. The fitting is precision-machined for proper alignment and easy assembly, ensuring the tubing sits securely and maintains a smooth flow path. Typical applications include oil and gas systems, chemical plants, and other process industries where reliable flow direction changes are essential. The male elbow also simplifies maintenance and reconfiguration since it can be easily disassembled and reinstalled without compromising the seal.
View Details
The Double Block & Bleed Valve – Flange x Flange – Ball x Ball with Needle Drain is a high-performance isolation and venting solution designed specifically for oil and gas applications. This valve combines two independent ball isolation valves and a centrally located needle drain valve within a single, compact body, ensuring reliable double isolation and safe pressure relief or venting.
Manufactured in compliance with ASME B16.34, API 6D, and ISO 17292 standards, it offers assurance of global quality and safety benchmarks. The design accommodates line sizes ranging from ½” to 2”, with pressure ratings from Class 150 up to Class 2500, making it suitable for both standard and high-pressure operations.
The flange x flange connections provide secure installation and easy integration into piping systems, while the ball x ball configuration guarantees tight shut-off. The needle drain allows for controlled venting, sampling, or pressure equalization, enhancing operational safety and efficiency.
The valve is well-suited for critical applications such as pipeline isolation, meter calibration, instrumentation, and maintenance operations in oil and gas facilities. Its compact, space-saving design reduces potential leak paths compared to conventional multi-valve assemblies, lowering installation costs and improving reliability.
View Details
Hex Reducing Nipples Male NPT are pipe fittings designed to connect two female-threaded pipes of different diameters while maintaining a secure and leak-resistant seal. The male tapered threads provide a tight connection that prevents fluid leakage, which is especially important in high-pressure systems.
These fittings are widely used in the oil and gas industry, chemical processing, and instrumentation applications where a reduction in pipe size is required without adding extra joints.
They are manufactured from high-quality materials such as stainless steel, brass, and other compatible alloys, ensuring durability and resistance to corrosion. The fittings are precision-machined from bar stock to provide burr-free internal surfaces for smooth flow and to reduce turbulence within the system. Threads are carefully capped and packed to prevent damage during transit.
Hex Reducing Nipples are rated for pressures up to 10,000 PSI and comply with ASME B1.20.1, SAE AS71051, ISO 7-1, and ISO 228 standards. They are designed for reliable performance in ambient temperatures from -28 to 37°C (-20 to 100°F) and support efficient installation with standard wrenches thanks to the hex shape, which allows secure tightening. These features make them suitable for high-pressure and instrumentation piping systems where both reliability and traceability are required.
View Details
The 45° Elbow NPT Thread Tube Fitting is a specialized connector used to change the direction of flow in piping systems by 45 degrees. Manufactured to precise standards, it provides a strong, leak-resistant connection between tubes with NPT threads, ensuring consistent system performance. The fitting is suitable for use in oil, gas, and industrial process systems, where controlling flow direction and minimizing stress on tubing is critical.
Its design allows compact and efficient piping layouts, reducing the need for multiple fittings while maintaining smooth fluid flow. The fitting is machined to ensure tight tolerances, providing reliable sealing even under vibration, thermal expansion, or pressure fluctuations. Case-hardened threads improve durability, while the material selection ensures compatibility with common industrial fluids and gases.
Unique to this fitting is its ability to create a precise 45° angle connection without compromising the integrity of the tubing system, making it ideal for applications where space is limited or exact routing is required. Installation is straightforward: the tube is inserted into the fitting, and the NPT threads create a secure mechanical seal that resists leakage over extended operational periods.
View Details
Surface Controlled Subsurface Safety Valve FRN 6-5/8 inch
The FRN wireline-retrievable flapper valve, which is normally closed, is held open by hydraulic control pressure from the surface. The valve operates on a hydraulic-piston principle. To open, tubing pressure slightly higher than the well pressure below the closed flapper is applied. Once well pressure is equalized across the closed flapper, hydraulic pressure is applied to the piston, which pushes the flapper open. The flapper hinge assembly is designed so the force on the piston is not applied directly on the hinge pin. Upon loss of hydraulic pressure in the control line, the valve's large spring serves to lift the hydrostatic head of the control fluid. The flapper spring is designed to close the valve when the piston moves up past the flapper. Opening Prong Nose Seal The FRN valve uses the valve housing as the downstop for the opening prong. This metal-to-metal (MTM) interface is designed to prevent flow from passing between the valve housing and opening prong. The MTM interface isolates the flapper and seat from fluid flow while the valve is open. This design creates an MTM interface with the full force exerted by the hydraulic piston, minus the spring compression force, holding the two metal faces in contact. Radius of Curvature at Flow Entrance Halliburton conducted a study with various curvatures on the entrance to the valve. The study tested abrasive fluids flowing through different test subs and examined the resulting wear patterns. As a result, an optimum radius of curvature was determined and implemented on the valve housings of all wireline retrievable safety valves. Applications » New completions » Deep set » High pressure Features » High-strength rod-piston actuation » Non-equalizing flapper closure » Solid construction flapper made from bar stock » Spherical radius seat on flapper improves seal reliability » Sealing and seating surfaces are out of flow path of well production when valve is in open position » Designed for easy field servicing *information referenced from supplier catalog. View Details
9 5/8" Mech-1 Single Grip Mechanical Set Packer for 47-53.5 PPF Casing
Ballycatter Mech-1 Single Grip Mechanical Packer
Available sizes: 5”, 5 1/2”, 6 5/8”, 7”, 9 5/8”, and 10 3/4”
The Ballycatter Mech-1 is a retrievable, compression-set mechanical packer designed for low-pressure production, casing integrity testing, and well intervention operations. Built with a long-stroke mandrel and a large bypass area, it allows unrestricted fluid circulation while running in hole. The bypass is controlled by a face-seal valve that automatically closes during setting, fully isolating the annulus once the packer is engaged.
Setting is achieved via a mechanical J-slot system using standard right-hand (or optional left-hand) rotation. Once the tool is positioned, applying set-down weight activates the slips and compresses the packing elements, sealing off the formation below. Retrieval is straightforward—lifting the tubing string engages the J-slot and reopens the bypass valve for safe circulation and recovery.
The Mech-1 features a rocker-type slip design for positive casing engagement and can be repositioned if required. Its straightforward operation, reliable sealing, and retrievability make it a practical solution for conventional production completions, casing leak diagnostics, and test operations where hydraulic setting is not required.
View Details
Crew Transport using modern buses worldwide
Crew Transport buses for long term charter in locations around the world where reliable transportation is critical. Getting the crew to and from the job site in safety and comfort is key to a good start and end to the workday. Custom crew bus solutions available and every project is unique so please contact us to work together to find an optimum solution on crew transport. View Details
HP-3 Hydraulic Set High Angle 6 5/8" 28-32 PPF Packer
Ballycatter HP-3 High Angle Packer
Available sizes: 5 1/2”, 6 5/8”, 7”, and 9 5/8”
The Ballycatter HP-3 is a hydraulic-set packer engineered for high-angle and deviated well applications, where conventional mechanical or wireline-set tools are not feasible. This packer is particularly suited for single or multi-zone completions, offering flexible deployment in complex well trajectories.
Unlike mechanical systems, the HP-3 requires no tubing movement to set. This enables full well control throughout the operation, as the tubing can be landed and the wellhead installed prior to circulating or displacing fluids.
Key Features:
• Reliable Setting Mechanism: Utilizes dual balanced pistons—one actuates downward to anchor the bi-directional slips, while the other moves upward to compress a three-element packing system. This simultaneous action ensures a secure set and pack-off.
• Three-Element Seal: The packing system uses dual-durometer rubber elements to ensure long-term sealing integrity across a range of downhole conditions.
• Slips & Housing: One-piece, bi-directional slips are housed in a shear-pinned chamber, protected by a full-diameter guide to prevent damage during deployment.
• Release Options: Features a dual-method release system:
• Straight pull via shearing of pre-set screws.
• Right-hand rotation (approx. 8 turns), followed by straight pull.
• Equalization & Retrieval: Built-in equalizing valve opens automatically during release to balance pressures and enable safe retrieval. A large-diameter bypass within the mandrel allows fluid to flow during retrieval, reducing swab effects on the packing elements.
The HP-3 is engineered for reliability, operational flexibility, and full well control—making it a practical choice for complex wellbore geometries.
View Details
7" HP-6 Hydraulic Set High Angle Production Packer for 26-32 PPF Casing
Ballycatter HP-6 High Angle Production Packer
Available sizes: 4 1/2”, 5”, 5 1/2”, 6 5/8”, 7”, 7 5/8”, and 9 5/8”
The Ballycatter HP-6 is a compact, hydraulically set production packer designed for low to medium-pressure applications in high-angle and horizontal wells. With a short body length and no tubing movement required for setting, the HP-6 is ideally suited for tight-radius deviations, stacked completions, and coiled tubing operations.
It can be run in single or multiple packer installations with sequential setting in a single trip, reducing rig time and complexity.
Rated to 7,500 psi and tested in Q125 casing, the HP-6 features a straight-pull release mechanism that is fully isolated from hydraulic pressure, allowing low shear-out force even under full differential pressure.
Built-in bypass ports equalize pressure during retrieval, ensuring smooth release and reducing swab risk. The tool can be set using rig pumps, and its economical design allows for easy redress and reuse. Optional rotational release is available for added flexibility in challenging retrieval scenarios.
Engineered with materials and elastomers for hostile environments, the HP-6 delivers dependable performance in offshore operations, high-angle wells, and cost-sensitive completions requiring reliability without unnecessary complexity.
View Details
Mud pump for circulating and drilling in extreme conditions
The Bomco Triplex Mud Pump has a herringbone design and is interchangeable with the Continental Emsco FB model. Mud pumps serve as the heart of the mud circulating system. Reciprocating piston pumps (also called slush pumps or power pumps) are widely used for drilling oil and gas wells. The advantages of the reciprocating positive-displacement pump include the ability to move high-solids-content fluids laden with abrasives, the ability to pump large particles, ease of operation and maintenance, reliability, and the ability to operate over a wide range of pressures and flow rates by changing the diameters of the compression cylinders (pump liners) and pistons. A pump that has single-action strokes in three cylinders is called a triplex pump. View Details
Angle Pattern Needle Valves Male x Female are designed to control the flow of liquids or gases in a piping system. The angle pattern allows the flow to change direction by 90 degrees, reducing piping complexity and minimizing pressure drop.
The male x female configuration enables easy connection to different pipe types and sizes, providing flexibility for installation in various system layouts. These valves are suitable for high-pressure applications, ensuring reliable and leak-free operation.
In oil and gas operations, they are used for controlling flow to instruments, transmitters, or equipment where space is limited and accurate flow control is needed. Metal-to-metal seals and durable stems ensure long-term performance under demanding conditions.
View Details
Tubing Hanger Coupling – 6 5/16” to 2 1/2”
The 6 5/16” to 2 1/2” Tubing Hanger Coupling is a specially made part used in oil and gas wells to connect a large casing opening to smaller tubing—typically 6 5/16 inches—to a smaller 2 1/2-inch upset production tubing. This size combination is often selected for well designs that require a broader casing interface for flow management, safety equipment, or well control hardware, while maintaining a slimmer production string for specific flow requirements or structural considerations.
This coupling is manufactured with upset-end compatibility, meaning it is suited for tubing that has thickened ends designed to strengthen threaded connections. This feature improves mechanical reliability and helps the connection withstand downhole pressure, tensile loads, and thermal cycling. The union nut design allows the coupling to be installed by tightening the nut without rotating the upper wellhead assembly, which is particularly useful in space-constrained or high-integrity environments.
To accommodate a range of operational needs, the coupling can be threaded on both ends to suit different tubing or spool designs and is compatible with back pressure valves—providing added safety during pressure control, intervention, or servicing. Built in accordance with API specifications and from high-strength materials, the coupling is designed to operate reliably in demanding conditions, including high-pressure wells and corrosive environments.
View Details
9 5/8" HP-6 Hydraulic Set High Angle Production Packer for 47-53.5 PPF Casing
Ballycatter HP-6 High Angle Production Packer
Available sizes: 4 1/2”, 5”, 5 1/2”, 6 5/8”, 7”, 7 5/8”, and 9 5/8”
The Ballycatter HP-6 is a compact, hydraulically set production packer designed for low to medium-pressure applications in high-angle and horizontal wells. With a short body length and no tubing movement required for setting, the HP-6 is ideally suited for tight-radius deviations, stacked completions, and coiled tubing operations.
It can be run in single or multiple packer installations with sequential setting in a single trip, reducing rig time and complexity.
Rated to 7,500 psi and tested in Q125 casing, the HP-6 features a straight-pull release mechanism that is fully isolated from hydraulic pressure, allowing low shear-out force even under full differential pressure.
Built-in bypass ports equalize pressure during retrieval, ensuring smooth release and reducing swab risk. The tool can be set using rig pumps, and its economical design allows for easy redress and reuse. Optional rotational release is available for added flexibility in challenging retrieval scenarios.
Engineered with materials and elastomers for hostile environments, the HP-6 delivers dependable performance in offshore operations, high-angle wells, and cost-sensitive completions requiring reliability without unnecessary complexity.
View Details
HDI 3200 MGS Differential Monitoring System
The HDI 3200 MGS Differential Monitoring System is a battery-powered, stand-alone device designed to monitor critical pressures and temperature in Mud Gas Separator operations within oil and gas drilling environments. It measures and displays the differential pressure between the liquid seal and mud gas pressure, along with monitoring the mud temperature. These measurements are essential for maintaining safe and efficient separator function, ensuring proper gas-liquid separation, and preventing equipment damage or hazardous conditions.
The system uses accurate and reliable pressure and temperature gauges, with pressure readings displayed in 1 PSI increments. It supports alternate engineering units to meet user preferences or site requirements and provides a 4-20mA output for integration with local or remote monitoring and control systems.
The enclosure is made of a durable polycarbonate/PBT alloy that is impact-resistant and UV stabilized, suitable for harsh field conditions including exposure to sunlight, moisture, and rough handling. Its compact, modular design allows for easy installation and maintenance.
The 3200 MGS Differential Monitoring System is essential in drilling operations for continuously monitoring pressure differences and temperature within Mud Gas Separators. This helps ensure the separator is functioning correctly by preventing gas or liquid buildup that could lead to equipment damage or unsafe conditions. By providing real-time data, the system supports safer drilling processes, reduces downtime, and helps maintain optimal performance in challenging well conditions.
View Details
Bigbore 9-5/8 inch Surface Controlled Subsurface Safety Valve Wireline Retrievable
The manufacturer has applied the same stringent testing used on its maximum reliability tubing-retrievable safety valves (TRSV) to its BigBore™ wireline-retrievable safety valve (WLRSV). This valve offers the durability and reliability of TRSVs through metal-to-metal (MTM) sealing of the contoured flapper, enhanced body connections, and debris isolation. The contoured flapper provides a large ID compared to other valve designs, while providing enhanced flapper sealing. Another significant feature of this valve is its ease of on-location servicing. The construction of the upper end of the valve provides for easy access to the valve’s external packing. Once the lock is removed, the packing retainer sleeve can be removed and serviced. The savings made possible by an enlarged ID, enhanced performance, and ease of service have made it an excellent choice for replacing equipment currently installed in existing completions. Applications » New completions » Replacement of existing WLRSVs to provide increased ID and reliability Features » MTM sealing contoured flapper closure with large ID » High-strength rod-piston actuation » Dual-sealing minimized body connections » Enhanced debris isolation through MTM interface of flow tube/bottom sub » Radius of curvature at flow entrance » Equalizing feature available » Designed for easy field servicing » Setting depths to 9,000 ft (2743 m) *information referenced from supplier catalog. View Details
5 1/2" Mech-1 Single Grip Mechanical Set Packer for 13-15.5 PPF Casing
Ballycatter Mech-1 Single Grip Mechanical Packer
Available sizes: 5”, 5 1/2”, 6 5/8”, 7”, 9 5/8”, and 10 3/4”
The Ballycatter Mech-1 is a retrievable, compression-set mechanical packer designed for low-pressure production, casing integrity testing, and well intervention operations. Built with a long-stroke mandrel and a large bypass area, it allows unrestricted fluid circulation while running in hole. The bypass is controlled by a face-seal valve that automatically closes during setting, fully isolating the annulus once the packer is engaged.
Setting is achieved via a mechanical J-slot system using standard right-hand (or optional left-hand) rotation. Once the tool is positioned, applying set-down weight activates the slips and compresses the packing elements, sealing off the formation below. Retrieval is straightforward—lifting the tubing string engages the J-slot and reopens the bypass valve for safe circulation and recovery.
The Mech-1 features a rocker-type slip design for positive casing engagement and can be repositioned if required. Its straightforward operation, reliable sealing, and retrievability make it a practical solution for conventional production completions, casing leak diagnostics, and test operations where hydraulic setting is not required.
View Details
LM2500+G4 SAC 50Hz SC Gas Turbine
The LM2500+G4 SAC 50Hz Simple Cycle is a fourth-generation aeroderivative gas turbine of the LM2500. Designed for industrial power applications, including those in the oil and gas sector, it delivers more output and greater thermal efficiency while retaining the ease of maintenance and high reliability the LM2500 series is known for.
In a simple cycle configuration, the gas turbine generates power directly by expanding hot gases through the turbine stages, without recovering heat for additional power generation. This design is favored for its simplicity, lower capital cost, faster start-up, and suitability for mobile or remote applications.
The LM2500+G4 improves upon its predecessor by increasing airflow and turbine cooling capacity, allowing for higher operating temperatures. These changes result in up to 40% thermal efficiency in simple cycle mode—an impressive figure for this class of turbine. This translates to improved fuel usage and reduced operational costs over time.
The engine features a Single Annular Combustor (SAC), which supports stable combustion with low emissions of nitrogen oxides (NOx) and carbon monoxide (CO). The combustor is also designed for durability and long life, with easily replaceable fuel nozzles and a thermal barrier coating for resistance to high temperatures and corrosion.
Its two-spool design means the engine has no cold start limitations, making it well-suited for harsh or variable environments. The power turbine and gas generator can be separated, allowing for easier in-module repairs and less downtime.
Overall, the LM2500+G4 SAC 50Hz Simple Cycle offers a balance of power, efficiency, and maintainability, making it an attractive solution for power generation and mechanical drive needs in industrial, onshore, and offshore oil and gas operations.
View Details
MS-52 Multistage Steam Turbine
Elevate Your Energy Solutions with the Kessels MS-52 Multistage Steam Turbine: Unleash Power, Precision, and Performance In the ever-evolving realm of steam turbine technology, Kessels Steam Turbines stands as a beacon of innovation and excellence. For the oil and gas industry, where power and precision are paramount, our MS-52 Multistage Steam Turbine is the ultimate solution – engineered to surpass expectations and redefine industry standards. Dominating Back Pressure Turbines Back pressure turbines, available in both single-stage and multi-stage configurations, serve as the vital link between boiler units and process steam headers. These turbines are the backbone of industries that demand a copious amount of steam, revolutionizing the utilization of steam and electricity generation. The Art of Efficiency At the heart of the MS-52 Multistage Steam Turbine is the hallmark of back pressure turbines: the straight-back pressure design. This engineering marvel ensures the seamless harnessing of exhaust steam, matching process demands with unparalleled precision. Every unit of electrical power generated is consumed as per the process steam demand, making it a pinnacle of efficiency. Applications Without Limits Our MS-52 turbine is not just a machine; it's a versatile workhorse ready to excel in various applications: Drive Applications: Whether in the oil and gas sector, sugar mills, sugar fibrizor systems, shredder drives, pump drives, or beyond, our turbine delivers power where it's needed most. Power Generation Applications: Take a giant leap towards sustainability by utilizing our turbine to generate electricity. It powers generators with clean and efficient steam energy, reducing your carbon footprint. Bleed Back-Pressure Steam Turbines At Kessels, we understand that adaptability is key. Our MS-52 turbine comes equipped with built-in bleed points, enabling uncontrolled extraction of steam within a medium pressure range. This feature proves invaluable when low-volume steam demands and high tolerance for pressure variations are the order of the day. Kessels turbines seamlessly blend the best of both bleed and back-pressure mechanisms. Extraction Back-Pressure Steam Turbines For industries with substantial process steam demand volumes and zero tolerance for pressure variations, our steam turbines with controlled extraction vents come to the forefront. Operating efficiently under intermediate pressure levels, these turbines ensure a steady and reliable steam supply that your operations can depend on. The Kessels Advantage Choosing Kessels Steam Turbines is more than a business decision; it's a choice of a partner committed to your success. Our MS-52 Multistage Steam Turbine embodies our unwavering dedication to innovation, performance, and customer satisfaction. Key Benefits of the MS-52 Multistage Steam Turbine: Unparalleled Efficiency: Maximize steam utilization while minimizing waste. Reliability Redefined: Built with precision and rigorously tested to ensure uninterrupted operations. Unmatched Versatility: Adapt effortlessly to changing needs, be it for drive applications or sustainable power generation. A Greener Future: Harness steam power for electricity generation, reducing your environmental impact. Dedicated Support: Our team of experts is at your service, ready to assist with installation, maintenance, and troubleshooting. Empower Your Future with Kessels In the competitive world of the oil and gas industry, every advantage matters. Step into a future of efficiency, reliability, and sustainability with the Kessels MS-52 Multistage Steam Turbine. Contact us today to discover how our turbine can revolutionize your operations and lead you toward a future of success. Kessels Steam Turbines – Powering Progress, Powering You. View Details
The T5.4 thermocouple is a temperature-sensing probe used in LM2500 gas turbines to measure exhaust gas temperature (EGT). The label T5.4 refers to its specific position in the turbine\'s exhaust thermocouple array—zone T5 (turbine exhaust), sensor 4. These sensors are part of a system that monitors thermal conditions at multiple points in the exhaust stream.
This thermocouple operates in high-temperature environments, withstanding continuous exposure up to approximately 1100°C. It is built to maintain accuracy and reliability under the thermal stress and vibration typical in gas turbine applications.
T5.4 thermocouples are often used with flexible
harness systems. This allows operators to replace individual probes without removing the entire harness, improving maintenance efficiency and reducing downtime.
By providing real-time exhaust temperature data, the T5.4 thermocouple supports engine control, performance optimization, and safety monitoring in industrial gas turbine operations.
View Details
LM2500+G4 DLE U PT Gas Turbine
The LM2500+G4 DLE U PT is a versatile gas turbine designed for a wide range of applications, including onshore and offshore power generation, gas pipeline compression, and LNG compression. It features Dry Low Emissions (DLE) technology, which reduces nitrogen oxide (NOx) emissions to as low as 25 parts per million by volume (ppmv) at 15% oxygen, meeting stringent environmental standards.
In the oil and gas industry, production rates are closely linked to available horsepower. The LM2500+G4 DLE U PT offers higher power output, high reliability, and a lower initial cost per kilowatt, making it a cost-effective solution for energy-intensive operations.
This turbine has proven its capability to operate reliably in extreme ambient conditions, with running data demonstrating performance at temperatures as low as -50°F and start-up capability down to -40°F. This wide operational temperature range ensures dependable service in harsh environments.
Fuel flexibility is a key strength of the LM2500+G4 DLE U PT. It can seamlessly switch between various fuels—lean treated natural gas, rich offshore gas, propane, or diesel—without shutting down or losing efficiency. This flexibility supports energy security, allowing continuous operation even if the natural gas supply is interrupted. Additionally, the turbine can be adapted to burn alternative fuels like bioethanol and naphtha, further enhancing fuel options.
A notable advantage of aeroderivative gas turbines like the LM2500+G4 DLE U PT is their ability to operate on hydrogen blends, which produce no carbon emissions when combusted. Both new turbines and existing units can be converted for high hydrogen fuel use, supporting decarbonization goals.
Moreover, the LM2500+G4 DLE U PT is truly dual-fuel capable, able to switch from 100% natural gas to 100% propane without the need for pilot fuels. This contrasts with dual-fuel reciprocating engines, which typically require about 5% diesel during gas operation, increasing costs and emissions. The LM2500+G4 DLE U PT’s fuel flexibility, emission controls, and robust design make it a reliable and efficient choice for demanding mechanical drive and power generation needs in the oil and gas sector.
View Details
5 Valve Manifolds Valve Manifold T Type – Pipe to Flange – 6000 PSI
The 5 Valve Manifold T Type, Pipe to Flange is engineered to connect impulse lines to differential pressure transmitters in industrial and oil and gas applications. It features 1/2” Female NPT Pipe to Flange connections set at 54mm (2-1/8”) centers, with a configuration consisting of two block valves, two equalizer valves, and one bleed valve. This design allows for efficient isolation, calibration, and maintenance of transmitters while maintaining process integrity.
The T Type configuration is especially useful because it provides a compact and organized valve layout that simplifies operations like bleeding and equalizing, reducing the risk of leaks and measurement errors. Using a 5 valve manifold ensures maximum operational flexibility, allowing operators to isolate the instrument, balance pressure, and vent safely without interrupting the main process.
Pipe to Flange connections are chosen when connecting transmitters or instruments to existing flanged piping systems, offering strong mechanical support and compatibility with industry-standard flanges. This combination of T Type, 5 valves, and pipe-to-flange connections ensures accurate, reliable, and safe pressure measurement and calibration in critical oil and gas operations.
View Details
HDI 2522 Choke Position Indicator System
The HDI 2522 Choke Position Indicator System is a 4-inch solid-state electronic device used to precisely monitor the position of chokes in oil and gas operations. It provides position readings in 1% increments from fully closed (0%) to fully open (100%). The system supports a variety of choke types by interfacing with linear, rotary, or retractable potentiometers, making it adaptable to different choke designs commonly used in the industry.
This indicator eliminates the need for pneumatic air lines traditionally used for position sensing, improving reliability and reducing maintenance requirements. The gauge features a liquid crystal display (LCD) with both a numeric readout and an analog bar graph for quick visual interpretation of choke position. It includes a low battery indicator to ensure continuous operation.
The system is battery powered with a field-replaceable 3.6 Vdc power pack rated for one year of continuous operation. The internal battery powers the gauge electronics but not optional 4-20mA output loops. The 2522 supports up to two additional slave gauges for remote position displays, allowing flexible monitoring setups across control rooms.
Its robust, impact-modified polycarbonate/PBT alloy case is UV stabilized and sealed with gaskets to protect the electronics. The device operates within a temperature range of -40°F to 176°F (-40°C to 80°C) and is suitable for harsh oilfield environments.
Installation is straightforward, with recommended cable lengths up to 1,500 feet between the gauge and potentiometer, and customizable cable options available to fit specific site needs. Each system is factory matched and serialized, supplied with a signed calibration certificate, ensuring accuracy to within ±1% full scale.
Overall, the 2522 system provides a reliable, accurate, and low-maintenance solution for real-time choke position monitoring, enhancing operational control and safety in oil and gas production.
View Details
HDI 3300 Temperature Gauge System
The HDI 3300 Temperature Gauge System is an intrinsically safe, battery-powered electronic temperature measurement device commonly used in oil and gas operations requiring precise temperature monitoring. Typical applications include high-pressure nitrogen pumping, geothermal and mud-based drilling, well control manifolds, flare stacks, and bulk liquid storage.
The system consists of a digital gauge display, sensor assembly, and interconnecting cable. The sensor, usually a Resistance Temperature Detector (RTD), is housed in a durable stainless steel case with various mounting options like 2-inch Male NPT, hammer unions, or flanges, allowing flexible installation near the temperature source.
The display features an LCD with numeric and analog bar graph outputs, providing temperature readings with 0.1-degree resolution and ±0.5% full-scale accuracy over a range of -50 to 150°C (-50 to 300°F). Users can switch between Celsius and Fahrenheit. It includes 4-20mA and 0-1 VDC output options for integration with remote monitoring, data logging, or control systems, and supports external power inputs.
Designed for ease of maintenance, the system is field-repairable with a replaceable battery pack. The sensor and display are factory-matched and calibrated, requiring recalibration if components are replaced. The gauge fits standard 6-inch panel cutouts and supports multiple mounting patterns. Cable lengths are customizable up to 200 feet or more.
The system operates reliably in temperatures from -40°C to +70°C and is certified for hazardous environments, with a rugged stainless steel sensor housing to withstand harsh field conditions.
The 3300 is well-suited for environments requiring precise, continuous temperature monitoring, including high-pressure drilling, well control, and fluid storage applications. Its intrinsically safe design provides dependable operation in hazardous locations without compromising safety. The solid-state electronics and durable construction reduce maintenance and downtime, while versatile mounting options allow placement close to the measurement point for accurate readings. Featuring clear numeric and bar graph displays along with remote output capabilities, the system supports timely decision-making and integrates easily with larger monitoring setups, enhancing process control and operational safety in demanding conditions.
View Details
2 1/16" Coiled Tubing Hanger 5M Pressure Rated
The 2 1/16” 5M Coiled Tubing Hanger is designed to support coiled tubing strings in well intervention and completion work. With a 5,000 psi pressure rating, it’s well-suited for moderate to high-pressure wells, and its compact 2 1/16” size makes it ideal for smaller wellheads or space-constrained setups.
It handles tubing sizes up to 3 1/2” O.D. and is commonly used for cleanouts, stimulation, logging, and other coiled tubing operations. A built-in wireline entry sub helps guide tools into the tubing while providing an extra seal and preventing tubing movement—improving well control and operational safety.
The hanger is available with API 6B or 6BX flange connections and can include a side outlet if needed. It’s a reliable, field-proven choice for operations requiring strong support and safe access to coiled tubing tools.
View Details
WI Water Injection Valve 1.75 inch
The WI retrievable injection valve is a high-performance, high-flow rate injection valve. High throughput is achieved by a unique valve configuration that minimizes turbulent and potentially erosive flow. Operation is not dependent on a specific flow rate, pressure, or setting depth, thus negating the need for adjustment over time. The valve incorporates a metal-to-metal valve and seat energized by the combination of an integral spring and well pressure acting from below. The WI injection valve can be deployed on a wireline lock or through-tubing pack-off device, providing flexibility not available with alternative injection valve systems. As a result of the simple design with fewer parts, redress and repair costs are considerably lower than those for other injection valve systems. Applications The WI injection valve is primarily used in water injection applications as an alternative to conventional tubing or wireline-set safety valves. The valve is also commonly used as a retrofit solution in water injectors in which a tubing to annulus leak has occurred. The valve can be deployed below the leak point to eliminate uncontrolled annulus pressure increases when the injection stops. Features » Compatible with all known lock systems » Dedicated designs to suit Halliburton EB0 intervention packers » Enhanced internal flow profile » Simple design and construction » Flow-loop testing performed to establish pressure drop versus pump rate *information referenced from supplier catalog. View Details
HP-3 Hydraulic Set High Angle 9 5/8" Packer
Ballycatter HP-3 High Angle Packer
Available sizes: 5 1/2”, 6 5/8”, 7”, and 9 5/8”
The Ballycatter HP-3 is a hydraulic-set packer engineered for high-angle and deviated well applications, where conventional mechanical or wireline-set tools are not feasible. This packer is particularly suited for single or multi-zone completions, offering flexible deployment in complex well trajectories.
Unlike mechanical systems, the HP-3 requires no tubing movement to set. This enables full well control throughout the operation, as the tubing can be landed and the wellhead installed prior to circulating or displacing fluids.
Key Features:
• Reliable Setting Mechanism: Utilizes dual balanced pistons—one actuates downward to anchor the bi-directional slips, while the other moves upward to compress a three-element packing system. This simultaneous action ensures a secure set and pack-off.
• Three-Element Seal: The packing system uses dual-durometer rubber elements to ensure long-term sealing integrity across a range of downhole conditions.
• Slips & Housing: One-piece, bi-directional slips are housed in a shear-pinned chamber, protected by a full-diameter guide to prevent damage during deployment.
• Release Options: Features a dual-method release system:
• Straight pull via shearing of pre-set screws.
• Right-hand rotation (approx. 8 turns), followed by straight pull.
• Equalization & Retrieval: Built-in equalizing valve opens automatically during release to balance pressures and enable safe retrieval. A large-diameter bypass within the mandrel allows fluid to flow during retrieval, reducing swab effects on the packing elements.
The HP-3 is engineered for reliability, operational flexibility, and full well control—making it a practical choice for complex wellbore geometries.
View Details
WI Subsurface Safety Valve 2.72 inch
The WI retrievable injection valve is a high-performance, high-flow rate injection valve. High throughput is achieved by a unique valve configuration that minimizes turbulent and potentially erosive flow. Operation is not dependent on a specific flow rate, pressure, or setting depth, thus negating the need for adjustment over time. The valve incorporates a metal-to-metal valve and seat energized by the combination of an integral spring and well pressure acting from below. The WI injection valve can be deployed on a wireline lock or through-tubing pack-off device, providing flexibility not available with alternative injection valve systems. As a result of the simple design with fewer parts, redress and repair costs are considerably lower than those for other injection valve systems. Applications The WI injection valve is primarily used in water injection applications as an alternative to conventional tubing or wireline-set safety valves. The valve is also commonly used as a retrofit solution in water injectors in which a tubing to annulus leak has occurred. The valve can be deployed below the leak point to eliminate uncontrolled annulus pressure increases when the injection stops. Features » Compatible with all known lock systems » Dedicated designs to suit Halliburton EB0 intervention packers » Enhanced internal flow profile » Simple design and construction » Flow-loop testing performed to establish pressure drop versus pump rate *information referenced from supplier catalog. View Details
5 1/2” SCSSSVs for High-Pressure Well Control
Available sizes: 2 3/8”, 2 7/8”, 3 1/2”, 4”, 4 1/2”, 5”, 5 1/2'” and 7”.
The 5 1/2" Surface-Controlled Subsurface Safety Valve (SCSSSV) serves a critical safety function by enabling rapid well shut-in if uncontrolled flow occurs due to equipment malfunction or damage. Positioned in the upper section of the wellbore, this valve acts as a barrier to isolate the production pathway, helping to prevent uncontrolled release of fluids and protect personnel, equipment, and the environment.
Its fail-safe design means that any loss of control pressure or system failure causes the valve to close automatically, ensuring well integrity even in emergency situations. The valve uses a wireline-retrievable flapper mechanism that is surface-controlled, allowing operators to maintain or replace key components without pulling the tubing string—significantly reducing downtime and operational costs.
Engineered for wells utilizing 5 1/2" (139.70 mm) tubing, this valve fits landing nipples with a 4.562” seal bore and supports working pressures up to 5,000 psi. The internal valve diameter of 2.38” is designed to balance flow efficiency and tool passage capability. Additionally, by positioning the sealing surfaces outside the flow path when open, the valve minimizes wear caused by erosive fluids, enhancing durability and service life.
This SCSSSV provides a reliable, maintainable solution for well control in demanding operational environments, combining robust construction with practical features to support continuous production and rapid emergency response.
View Details
7" Mech-1 Single Grip Mechanical Set Packer for 26-29 PPF Casing
Ballycatter Mech-1 Single Grip Mechanical Packer
Available sizes: 5”, 5 1/2”, 6 5/8”, 7”, 9 5/8”, and 10 3/4”
The Ballycatter Mech-1 is a retrievable, compression-set mechanical packer designed for low-pressure production, casing integrity testing, and well intervention operations. Built with a long-stroke mandrel and a large bypass area, it allows unrestricted fluid circulation while running in hole. The bypass is controlled by a face-seal valve that automatically closes during setting, fully isolating the annulus once the packer is engaged.
Setting is achieved via a mechanical J-slot system using standard right-hand (or optional left-hand) rotation. Once the tool is positioned, applying set-down weight activates the slips and compresses the packing elements, sealing off the formation below. Retrieval is straightforward—lifting the tubing string engages the J-slot and reopens the bypass valve for safe circulation and recovery.
The Mech-1 features a rocker-type slip design for positive casing engagement and can be repositioned if required. Its straightforward operation, reliable sealing, and retrievability make it a practical solution for conventional production completions, casing leak diagnostics, and test operations where hydraulic setting is not required.
View Details